Fischer's Mutual Exclusion Protocol (MEX)

\[P_1 \]

\[P_2 \]

\[P_i : \]

- repeat
 - repeat
 - \text{await} \ k = 0
 - \ k := i \ ; \ \text{delay} \ b
 - until \ k = i

\textbf{Critical section}

\[k := 0 \]

\textbf{forever}

<table>
<thead>
<tr>
<th>8b > 11a</th>
<th>Number of locations</th>
<th>Number of transitions</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual exclusion (two processes are never in the critical section at the same time).</td>
<td>16</td>
<td>81</td>
<td>3.8 sec.</td>
</tr>
</tbody>
</table>
Railroad Crossing: Train, Controller, and Gate

Train
- $x \geq 2000$
- $x \geq 1000$
- $z \in [-50, -40]$
- $z = 1000$
- $z \geq 0$
- $z \in [-50, -30]$
- $x = 100 \rightarrow z := [2000, \infty)$
- Exit
- $x \leq 100$
- $z \in [30, 50]$

Gate
- Up
 - $g \leq 90$
 - $\dot{g} = 9$
 - Raise
- Open
 - $g = 90$
 - $\dot{g} = 0$
- Down
 - $g \geq 0$
 - $\dot{g} = -9$
 - Lower
- Closed
 - $g = 0$
 - $\dot{g} = 0$

Controller
- About to lower
 - $t \leq \alpha$
 - $t = 0$
 - Lower
 - $t := 0$
 - Exit
- Idle
 - $t = 0$
 - Exit
 - $t := 0$
 - Raise
 - $t := 0$
 - App

Table

<table>
<thead>
<tr>
<th>$\alpha < 49/5$</th>
<th>Number of locations</th>
<th>Number of transitions</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the train is within 10 meters to the gate, the gate is always fully closed.</td>
<td>36</td>
<td>90</td>
<td>0.2 sec.</td>
</tr>
</tbody>
</table>